Serum leptin and Adiponectin Levels in de novo Acute myeloid Leukemia Patients: correlation with clinical characteristics

Nahla Ahmad Bahgat Abdulateef 1,2 Mahmoud M Kamel1,
Omima Salaheldin3, Mohamed Ghareeb4.

1 Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt; 2 Laboratory and Blood Bank Department, King Abdullah Medical City, Makkah, Kingdom of Saudi Arabia, 3 Clinical Pathology Department, Ahmed Maher Education Hospital, Cairo, Egypt; 4 Medical Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt.

ABSTRACT

Introduction: Acute myeloid leukemia (AML) is a heterogeneous clonal stem cell malignancy characterized by proliferation of immature hematopoietic cells. Adipokines in particular leptin and adiponectin are highly active molecules that attracted considerable interest due to their potential role in the development of cancer as a risk factor. We aimed to measure the body mass index, serum levels of leptin and adiponectin in AML patients, correlating these levels with standard prognostic markers of the disease. Materials and Methods: A total of 60 newly diagnosed AML Egyptian patients attended to NCI, Cairo University and twenty healthy controls age and sex matched were enrolled. Serum Leptin and Adiponectin were assayed in both patients and controls by enzyme linked immune assays. Results: significant lower serum levels of leptin and adiponectin were detected compared to controls (p< 0.02, <0.001) respectively. No significant correlation was detected between serum adipokines and other laboratory parameters except a negative significant correlation was detected between serum adiponectin and bone marrow blast. Regarding cytogenetic analysis, no significant correlation between cytogenetic and serum leptin and adiponectin levels (p=0.98, 0.38) respectively. The current study addressed the reduction of adipocytokines levels in AML together with negative correlation between bone marrow blasts and adiponectin levels suggesting the implication of adipocytokines in pathogenesis of AML, however these findings necessitate additional studies on large scale of cases.
Key words: Adipokines, leptin, adiponectin, acute myeloid leukemia, cytogenetics, body mass index, obesity.

INTRODUCTION:

Acute myeloid leukemia (AML) is a heterogeneous clonal stem cell malignancy characterized by proliferation of immature hematopoietic cells and accumulation in bone marrow, peripheral blood, and other tissues. This process is associated with manifestations of bone marrow failure (neutropenia, anemia, and thrombocytopenia) (Smith et al., 2013).

AML accounts for up to 90% of all acute leukemias in adults. It is the most common form of acute leukemia among adults and accounts for the largest number of annual deaths from leukemias (Siegel et al., 2014).

Despite recent advances in diagnosis and treatment of AML, the overall survival in adults remains poor. The 5-year survival reaches <50% in patients <45 years of age and <5% in patients >65 years of age at diagnosis (Smith et al., 2013).

The prognostic factors affecting outcome of adult AML patients may be subdivided into those related to patient characteristics which include age, performance status, comorbidities and general health condition and those related to characteristics particular to the AML clone such as white blood count (WBC), existence of prior MDS, previous cytotoxic therapy for another disorder, and cytogenetic and molecular genetic changes in the leukemic cells at diagnosis (Döhner et al., 2010).

The host-related factors usually predict treatment-related mortality (TRM) and become more important as patient age increases while the disease-related factors predict resistance to, at least, conventional therapy (Döhner et al., 2010).

Obesity or body mass index (BMI) is considered important host factor as many studies have noted an association between it and higher incidence of various hematologic malignancies, including AML (Larsson and Wolk, 2008; Castillo et al., 2015).

However, data regarding the prognosis of obesity on AML are conflicting. Pediatric leukemia patients with unhealthy BMI showed poor prognosis (Inaba et al., 2012), but other studies...
showed that obesity did not affect the prognosis of adults with AML (Medeiros et al., 2012) and (Brunner et al., 2013).

The effects of obesity may be explained by two different mechanisms, first as a result of the greater mass of fat itself and second as a result of an expansion of the endocrine function of the enlarged and higher numbers of fat cells and the effects of these endocrine changes on target tissues (e.g., increased plasma leptin, insulin, insulin growth-factor [IGF]-1, androgens, estrogens, IL-6, and tumor necrosis factor-α) (Bray, 2004).

Leptin is expressed by adipocyte tissue as a product of the obesity gene (ob gene). It consists of a 16 kD secreted protein (Zhang et al., 1994 ; Considine et al., 1996). Leptin receptors are commonly expressed in newly diagnosed cases of AML, Chronic myeloid leukemia (CML) and acute lymphoblastic leukemia (ALL). Leptin receptor expression is higher in CD34 positive immature hematopoietic cells than in mature neutrophils (Yilmaz et al., 2008).

Leptin is identified as a key hormone in the regulation of energy expenditure by reducing food intake and controlling adipose tissue metabolism, also it can stimulate proliferation and inhibit apoptosis of leukocyte subgroups. Moreover, leptin also stimulates the growth and viability of leukemic cells, suggesting a role for leptin in the pathogenesis of hematologic malignancies (Iversen et al., 2002).

Adiponectin is an adipose-tissue protein and it has insulin-sensitizing, antiinflammatory, and antiatherogenic activities (Barb et al., 2007). Decrease level of adiponectin is associated with malignancies (Kelesidis et al., 2006).

Adiponectin has been linked to increase the risk of myeloid hematological malignancies, myelodysplastic syndromes (MDS), and myeloproliferative disorders including chronic myelogenous leukemia (CML). These findings may be explained by hypothesis stating that adiponectin induces apoptosis and inhibits predominantly the proliferation of myeloid cell lineage (Dalamaga et al., 2012).

Aim of the work:

The aim of current study is to measure the body mass index, serum levels of leptin and adiponectin in AML patients comparing with normal healthy controls, and correlate these levels with standard prognostic markers of the disease.
Materials and Methods

- **Study design**

 - A total of 60 untreated newly diagnosed acute myeloid leukemia patients presenting to the Clinical Pathology Department of the National Cancer Institute (NCI), Cairo University, Egypt from October 2013 to June 2015 were enrolled. The studied patients included 28 males (46.7%) and 32 females (53.3%) in addition to 20 healthy age and sex matched controls were taken.

 - Patients with febrile neutropenia, sepsis, any organ failure, with hypertension or diabetes were excluded.

 - Body mass index (BMI) was calculated by dividing body weight (kg) by square height (m²). We dichotomized BMI as BMI < 25 (non-overweight and non obese) and BMI ≥ 25 (overweight and obese). Diagnosis was based on WHO criteria in addition to FAB classification.

 - Pretreatment evaluation included thorough history and full clinical examination, complete blood count (CBC), bone marrow (BM) aspiration and trephine biopsy for morphology, cytochemistry, EDTA peripheral blood or bone marrow aspirate specimens for flowcytometry analysis, (Ludwig, 1998) and heparinised sample for cytogenetic study, (ISCN, 1985) were collected from all patients. Serum samples from both patients and controls were taken for serum leptin, adiponectin, Liver and kidney functions tests, uric acid level, serum electrolytes and LDH. Radiological examination includes chest radiographs, abdominal ultrasound, ECG and echocardiography.

 - Enzyme-linked immunosorbent assay (ELISA): Leptin and Adiponectin were assayed by quantitative sandwich enzyme linked immune assays according to the manufacturer's instructions. The assays was performed on serum samples collected from both patient and controls using DIA Source Leptin-ELISA kit (Belgium) and Avibion Human Adiponectin (Acrp30) ELISA kit (Finland) respectively. The intensity of color developed is proportional to the concentration of leptin and
adiponectin in the samples. The concentration of the samples can be read directly from standard curve.

- Ethical approval

The study was approved by the Regional Research and Ethics Committee at the National Cancer Institute (NCI), Cairo University. Written informed consent was obtained from all participants involved in the study.

- Statistical analysis of result:

Statistical Data was analyzed using IBM SPSS advanced statistics version 20 (SPSS Inc., Chicago, IL). Numerical data were expressed as mean and standard deviation for variables with normal distribution. Qualitative data were expressed as frequency and percentage. The Wilcoxon Rank Sum test was used to compare categorical variables and the independent “t” test or the Mann Whitney test was used to compare numeric variables according to the type of data distribution. For possible association between each two variables Ranked Sperman test was used for non-parameteric data. Chi-square test for comparison between two independent groups as regards the categorized data. Probability (p-value) < 0.05 was considered significant and highly significant if P-value <0.001.

Results

- The studied patients included 28 males (46.7%) and 32 females (53.3%) with M: F ratio 1:1.4. Their age ranged from 15 to 73 years. Twenty healthy subjects were taken as control. They were 11 males (55%) and 9 females (45%) with male to female ratio 1.2:1. Their age ranged from 26 to 50 years.

- Serum Leptin were determined at a level of 10.9±9.5 ng/ml in the patient group which is significantly lower than the controls 60.2±165.6ng/ml (p<0.05). Furthermore serum adiponecin showed highly significant lower levels in the studied group compared to controls 1.5±0.9 and 4.6±2.9 respectively p-value <0.001 (table 1).

- Forty eight patients (80%) were non-overweight and non-obese BMI <25 Kg/m². 11 of the control group (55%) were non-overweight and non-obese BMI <25 Kg/m². Statically
significant difference exists regarding BMI between acute myeloid leukemia patients when compared with normal controls (P < 0.05) (Table 2).

- According to cytogenetic analysis, the patient group was divided into two risky subgroups: favorable (n=20), both intermediate and unfavorable (n=40) were joined together due to low numbers of unfavorable. There was no significant correlation between serum leptin and adiponectin levels (p=0.98, 0.38) respectively (Table 3).

- Correlation between Leptin and other laboratory data showed no significant difference for parameters including white blood cell count, hemoglobin level, platelet count, percentage (%) of peripheral or bone marrow blasts infiltration, serum lactate dehydrogenase (LDH) level, p value > 0.05 (Table 4).

- Correlation between Adiponectin and the previously mentioned laboratory data revealed significant negative correlation with BM blast % (r 0.326 & P<0.05). However no significant difference with other parameters including white blood cell count, hemoglobin level, platelet count, percentage (%) of peripheral blasts, serum lactate dehydrogenase level p value>0.05 (Table 5).
Table (1): Serum Leptin and adiponectin levels in acute myeloid leukemia patients versus controls.

<table>
<thead>
<tr>
<th>Item</th>
<th>AML cases n=60</th>
<th>Normal controls n=20</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leptin(ng/ml)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean±SD (median)</td>
<td>10.9±9.5</td>
<td>60.2±165.5</td>
<td>0.02*</td>
</tr>
<tr>
<td></td>
<td>9.0</td>
<td>20.0</td>
<td></td>
</tr>
<tr>
<td>Adiponectin(ng/ml)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean±SD (median)</td>
<td>1.5±0.9</td>
<td>4.6±2.9</td>
<td><0.001**</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>3.6</td>
<td></td>
</tr>
</tbody>
</table>

** Highly significant
*significant

Table (2): Comparison between Patients and Controls as regard BMI

<table>
<thead>
<tr>
<th>item</th>
<th>Patients n=60</th>
<th>Control n=20</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI</td>
<td><25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>48</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>80%</td>
<td>55%</td>
<td></td>
</tr>
</tbody>
</table>
Table (3): Serum Adipocytokine levels (mean ±SD) in different cytogenetically classified acute myeloid leukemia patients.

<table>
<thead>
<tr>
<th>AML cases n=60</th>
<th>Favorable n=20</th>
<th>Intermediate+ Unfavorable n=40</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leptin (ng/ml)</td>
<td>10.94±9.9</td>
<td>10.87±9.4</td>
<td>0.980</td>
</tr>
<tr>
<td>Adiponectin(ng/ml)</td>
<td>1.3±0.8</td>
<td>1.6±1.1</td>
<td>0.386</td>
</tr>
</tbody>
</table>

Table (4) Correlation between serum leptin level and, WBCs, HB, PLT count, blast % (Blood & bone marrow), LDH in acute myeloid leukemia patients.

<table>
<thead>
<tr>
<th>Leptin(ng/ml)</th>
<th>WBC (blood)</th>
<th>HB (blood)</th>
<th>PLT (blood)</th>
<th>Blast% (blood)</th>
<th>Blast% (bone marrow)</th>
<th>LDH Iu/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>-0.09</td>
<td>0.03</td>
<td>-0.03</td>
<td>-0.11</td>
<td>0.09</td>
<td>0.014</td>
</tr>
<tr>
<td>p- value</td>
<td>0.470</td>
<td>0.846</td>
<td>0.821</td>
<td>0.389</td>
<td>0.484</td>
<td>0.914</td>
</tr>
</tbody>
</table>
Table (5) Correlation between serum adiponectin level and WBCs, HB, PLT count, blast % (blood & bone marrow), LDH in acute myeloid leukemia patients.

<table>
<thead>
<tr>
<th>adiponectin (ng/ml)</th>
<th>WBC (blood)</th>
<th>HB (blood)</th>
<th>PLT (blood)</th>
<th>Blast% (blood)</th>
<th>Blast% (bone marrow)</th>
<th>LDH (IU/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0.05</td>
<td>-0.10</td>
<td>-0.13</td>
<td>-0.07</td>
<td>-0.326</td>
<td>-0.02</td>
</tr>
<tr>
<td>p-value</td>
<td>0.692</td>
<td>0.446</td>
<td>0.329</td>
<td>0.573</td>
<td>0.04*</td>
<td>0.859</td>
</tr>
</tbody>
</table>

* Significant

Discussion

Acute Myeloid Leukemias (AML) are heterogeneous group of blood malignancies, characterized by a block at various stages of hematopoietic differentiation, leading to the accumulation of immature myeloid cells in bone marrow and peripheral blood (Gocek et al., 2010). The more carefully AML is studied; the clearer appears the heterogeneity between cases regarding morphology, immunological phenotype, and associated molecular genetic abnormalities (Burnett and Venditti, 2010). Serum leptin levels are affected by many factors including energy imbalance, fasting, acute infection, inflammation, hormones and many cytokines (Sinha and Caro, 1998) (Fantuzzi and Faggioni, 2000).

Leptin alone and in combination with other cytokines has a stimulatory effect on leukemia hematopoiesis and has anti-apoptotic effect (Beaulieu et al., 2011) (Ning et al., 2010). This effect could be explained by the expression of leptin by bone marrow stromal cells and the detection of leptin receptors on normal and leukemic hematopoietic cells (Nakao et al., 1998), (Laharrague, et al, 1998), (Hino et al., 2000).

Serum leptin levels have been examined in different malignancies including leukemia. Significant lower levels of serum leptin in the studied AML group was detected than the control group (P<0.05). This is in agreement with (Aref et al., 2013) (Bruserud et al., 2002).
Both detected significant lower levels of serum leptin in their AML patients. This reduction in serum level of leptin is not altered during chemotherapy–induced cytopenia and complicating febrile neutropenia (Bruserud et al., 2002).

In addition studies on gastrointestinal cancers revealed lower circulating leptin concentration, which were not altered by the presence of an inflammatory response and is not a determined factor in weight loss in those patients. (Wallace et al., 1998) (Abolukbas et al., 2004).

However in contrary to our results in a small study done by Hamed NA and his colleague a significantly elevated level of leptin was detected. This elevation was unrelated to the presence of extramedullary infiltration or response to chemotherapy (Hamed et al., 2003).

Adiponectin, an adipocyte-derived secretory protein, is a 30-kDa complement C1q-related protein. Adiponectin circulates as several multimers, including a high molecular weight form thought to be the most clinically relevant. Serum levels of adiponectin are markedly decreased in individuals with visceral obesity and states of insulin resistance, such as type 2 diabetes mellitus and atherosclerosis (Berg and Combs, 2001).

In the present work, adiponectin levels were significantly lower in AML patients as compared to healthy controls. This reduction might be due to decrease in the bone marrow fat mass due to overcrowding of the BM by blast cells; this is confirmed by the significant negative correlation between the BM blast cell counts and adiponectin levels detected in our AML patients. This finding is keeping with that reported in several types of cancers including leukemia (Kelesidis et al., 2006), (Barb et al., 2007), (Are fetal., 2013).

In an in vitro study done by Yokota et al in 2000 they have investigated the functions of adiponectin in haematopoiesis and found that adiponectin predominantly inhibits proliferation of myeloid cell lines, and induces apoptosis in myelomonocytic leukemia lines, but did not suppress proliferation of erythroid or lymphoid cell lines. This hormone has also been inversely associated with both adult forms of cancer that have been epidemiologically investigated, namely breast cancer (Miyoshi et al., 2003) (Mantzoros et al., 2004), endometrial cancer (Dal Maso et al., 2004), acute leukemia (Petridou et al., 2006), (Hatim et al., 2013).
Regarding correlation studies, a negative significant correlation was detected between serum adiponectin and bone marrow blast cell percentage (P-value <0.05), which is in line with different other studies (Aref et al., 2013) (Molina et al., 2008). On the other hand, no significant correlation was detected between serum adipocytokines (leptin and adiponectin) and different hematological parameters (WBCs, HB, platelet count), serum LDH level, peripheral blood blasts. These findings were demonstrated by Yilmaz et al., 2008 and Hamed et al., 2003 who reported a none significant correlation with peripheral blood and bone marrow blasts.

Leptin and adiponectin levels did not show a significant correlation with the two cytogenetic groups, contrary to Are fetal, 2013 and Molica et al., 2008 who demonstrated a significant correlation between adipocytokines and different cytogenetic groups. In their study higher levels of leptin and adiponectin were estimated in unfavourable and favourable cytogenetic groups respectively. Their results point out for the prognostic value of serum leptin and adiponectin levels in acute myeloid leukemia patients.

In a series of recent papers, researchers described leptin and adiponectin levels during diagnosis and treatment of different hematological diseases demonstrating the changes in adipose tissue and metabolism in their disease states (Moschovi et al., 2010, Pamuk et al., 2006, Petridou et al., 2006, Fantuzzi et al., 2000). The current study addressed the reduction of adipocytokines levels in association with de novo AML together with negative correlation between bone marrow blasts and adiponectin. These findings suggest the implication of both leptin and adiponectin in AML pathogenesis which might be useful as prognostic markers of AML, however, these findings necessitate additional studies of leptin and adiponectin in AML patients and to be related to other risk factors as severe illness, altered energy balance, and disease complications on a large scale of cases.

REFERENCES

